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Abstract

The stochastic Dollo model is a model for capturing evolution of fea-
tures, for example cognate data in language evolution. However, it is
rather sensitive to borrowing events, coding errors, semantic shift and
other anomalies, so other models, in particular the covarion model, tends
to have a better fit to the data. Here, we introduce the pseudo Dollo
model, a model of character evolution along a tree that can be formu-
lated as a three-state continuous time Markov chain (CTMC) model. The
initial state represent absence of a feature, then a birth event allows the
feature to be present. A death event can follow so that the feature be-
comes absent again. However, no new birth events are allowed after a
death event has taken place.

We examine the model in a fully Bayesian setting, and demonstrate
it can have a better fit than some of the popular alternative models on
some real world datasets. Some variations on the pseudo Dollo model
are introduced as well, including the multi-state pseudo Dollo model and
pseudo Dollo covarion model.

The model is implemented in open source software Babel, a package to
BEAST [2] licensed under LGPL. A user friendly way to set up an analysis
is available through BEAUti, the graphical user interface of BEAST.

1 Background

The stochastic Dollo model [15] is a model of character evolution along a tree
that is based on the Dollo principle [5]: a feature that is lost won’t be regained.
Its corollary implies that a feature only evolves into presence once, but can
be lost several times. This is a natural explanation of language evolution of
cognates. After all, the definition of a cognate is a word form with a common
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ancestry. When there are few borrowing events in the cognate data, nor much
coding errors, the stochastic Dollo model fits the data very well. However, when
there are borrowing events across distant languages in the language tree, or there
are coding errors, the stochastic Dollo model tends to have difficulty fitting the
data, and two-state CTMC or covarion models [18] tend to fit better. Another
situation where the stochastic Dollo model has problems is when a feature is
modeled along a gene tree that suffers from incomplete lineage sorting and the
feature of interest is the result of another cognate history than the one in the
analysis. In this case, the feature may be Dollo like on the gene tree (that is, the
tree representing the history of one of the meaning classes), but not necessarily
on the species tree (that is, the history of languages). Semantic shift is another
source of trouble for the stochastic Dollo model, where the word form remains
present in a language, but its meaning changes between a number of related
definitions.

The covarion model [18] in particular tends to show an unreasonable good fit
in these cases. For example, when the data is mostly Dollo like, but also has a
good number of borrowing events, like is the case for Indo-European [3, 11] and
Austronesian [12] cognate data. It is hard to get an intuition why the covarion
model works so well. Here, we introduce an alternative model to the stochastic
Dollo model that fits well, and is intuitive like the stochastic Dollo model. As
a bonus, a tree likelihood using the pseudo Dollo model can be calculated more
efficiently than the Dollo model – the BEAST implementation is about twice as
fast. We also introduce some variations on the pseudo Dollo model, and show
it performs well on cognate data for Transeurasian languages.

2 Methods

First, we describe the binary CTMC, covarion and stochastic Dollo models,
which are popular models for cognate evolution [3, 11, 12].

2.1 Two state CTMC model

A popular method for cognate evolution is the two state continuous time Markov
chain (CTMC) model (see [17] for an introduction to CTMC models), which
simply recognises two states: present and absent. The rate matrix is

Q =

[
−γ γ
γ −γ

]
with non-negative frequencies f0, f1 such that f0 + f1 = 1. To guarantee iden-
tifiability, we set γ = 1, so there is just one degree of freedom left from the
frequencies, which makes it the model with the fewest number of parameters
among popular cognate evolution models. The model allows frequent switches
between features being present and absent, unlike the stochastic Dollo model,
so it is a lot less sensitive to borrowing and coding errors. When different sites
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evolve at different rates, the binary CTMC model can benefit from gamma rate
heterogeneity across sites [19].

2.2 Covarion model

The covarion model [18] is a model that assumes a character can evolve in two
different modes: a slow and a fast one. When in the fast mode, the character
evolves quickly between absent and present states and vice versa, but when in
the slow mode, it can stay in the same state for long periods of time. So, there
are four states: fast absent, fast present, slow absent and slow present. When
dealing with cognate data, absence of a cognate is encoded as both fast and
slow absent, and presence of a cognate as both fast and slow present, so it uses
ambiguity codes. One way to encode the covarion model is through a Q matrix

Q =


−1− s 1 s 0

1 −1 0 s
s 0 −α− s α
0 s α −α− s

 (1)

where s is the switch rate and α the mutation rate for the slow state. The
fast mutation rate is fixed at 1 to ensure identifiability of the other parame-
ters. Note this encoding is slightly non-standard, but tends to perform well
on cognate data. Frequencies are parameterised through visible frequencies
f0, f1 and hidden frequencies hfast, hslow, constrained such that f0 +f1 = 1 and
hfast+hslow = 1 and all frequencies non-negative. The frequencies for the states
are then hfastf0 for the state ‘fast absent’, hfastf1 for ‘fast present’, hslowf0 for
‘slow absent’ and hslowf1 for ‘slow present’. The rate matrix is multiplied with
the frequencies over states and resulting matrix is exponentiated to obtain the
matrix of transition probabilities. If hfast = hslow = 0.5 this is a time reversible
process, but otherwise it is not, though a correction can be applied to make it
reversible1.

Note there are 2 degrees of freedom for frequencies, one for visible and one
for hidden frequencies, so together with switch rate s and mutation rate α this
makes 4 degrees of freedom, as we shall see, that is one more than the pseudo
Dollo model.

Since the covarion model allows multiple birth events in the tree, it can cater
for non-Dollo like characters, and tends to fit well when there is some borrowing
present in cognate data.

2.3 Stochastic Dollo model

The stochastic Dollo model [1, 15] is inspired by Dollo’s law of irreversibility,
a hypothesis proposed by Louis Dollo in 1893 [5]. It states that once a feature
has been lost it will not be obtained again. This nicely fits with the definition
of cognates, which are word forms with a common ancestry, obtained once at

1M. Pagel personal communication
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some point in history, and possibly lost many times, but not gained multiple
times. The stochastic Dollo mode assumes each cognate can only arise once
(with Poisson rate λ) but can be lost multiple times with death rate µ. Once
the cognate is lost, it cannot arise again. The infinitesimal rate matrix of this
process is

Q =

[
− 0
µ −

]
In general, the assumption of the stochastic Dollo model turn out to be too

restrictive for cognate data as collected by linguists. Part of the reason is that
horizontal transfer (that is borrowing of terms between languages in contact)
results in more than one birth event of the cognate. Say language A borrows
from B, but A and B are phylogenetically distant. For the stochastic Dollo
model to fit such a situation, it has to assume a birth at or before the most
recent common ancestor of A and B, which can be quite high in the tree, and
may require a large number of losses of the cognate, resulting in a very low
probability of such event. The same patterns are present in cognate data when
there is semantic shift or coding errors. The covarion model tends to fare much
better in such situations, since it allows multiple births of the cognate.

2.4 Pseudo Dollo model

Given the definition of cognates, it seems natural to assume that when a cognate
becomes present, it can be lost, but is unlikely to be regained in accordance with
Dollo’s law of irreversibility. However, there does not seem to be a reason to
assume the restriction of the stochastic Dollo model that there can be only a
single birth event of the cognate at some point in the tree. The pseudo Dollo
model allows multiple births, but once a cognate is gained, it only allows the
cognate to be lost once, never to be gained again.

The pseudo Dollo model is a CTMC model with three states: initial, present
and removed. There are two rate parameters, the birth rate λ and death rate µ
and the rate matrix Q for the CTMC has the following form

Q =

−λ λ 0
0 −µ µ
0 0 0

 (2)

Note that this process (like the stochastic Dollo model) is not time reversible;
once transitioned from the initial to the present state, the initial state cannot
be entered any more, and once in the removed state there is no way to escape
from it.

Let T be a rooted tree over a set of n taxa x1, . . . , xn. Internal nodes
xn+1, . . . x2n−1 of the tree are numbered n + 1, . . . , 2n− 1. By convention, the
highest numbered node (2n − 1) is the root and we use πi to denote the index
of the parent of node i. With each node xi is associated a character ai, which is
the ‘present’ state if the feature (say a cognate) is present, but if the feature is
not present it is both ‘initial’ and ‘removed’, so (like with the covarion model)
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we use ambiguity to encode characters. Then the likelihood of observing the set
of tip characters a1 . . .an, given a tree T given, birth and death parameters λ
and µ and other parameters θ (like branch length, etc.) is

P (a1 . . .an|T, λ, µ, θ) =
∑
v1∈a1

. . .
∑
vn∈an

∑
vn+1∈a

. . .
∑

v2n−1∈a∏
i=1...2n−2

P (xi = vi|xπi
= vπi

, λ, µ, θ)

P (x2n−1 = v2n−1|λ, µ, θ) (3)

where the branch probabilities

P (xi = vi|xπi = vπi , λ, µ, θ) = eQti [vi, vπi ]

Here, Q is the rate matrix from Eq. (2). This is the probability of going from
character vπi

to vi over time ti according to the CTMC model. Note ti is
typically the branch length, but when using clock models (like the uncorrelated
relaxed clock, see [6] for other clock models) there may be a rate multiplier
involved as well. Further,

P (x2n−1 = v2n−1|λ, µ, θ) = fv2n−1

where finitial, fpresent and fremoved are the so called frequency parameters at
the base of the tree. Since they sum to one (finitial+fpresent+fremoved = 1 and
all frequencies non-negative), there are only two degrees of freedom introduced.
Eq. (3) looks very demanding, but fortunately it can be calculated efficiently
using Felsenstein’s pruning algorithm [9], which allows it to be calculated in
O(n) time.

Since typically a clock model is assumed, which provides a multiplier for
the branch lengths, we cannot estimate both λ and µ as well as the clock rate;
raising the clock rate and reducing both λ and µ results in the same fit, so we
have an identifiability issue. By fixing λ to 1, this problem is solved, leaving
just 3 degrees of freedom for the psuedo Dollo model: one for µ and two for
frequencies.

We assume a Dirichlet(1,1,1) prior over the frequencies and an exponential
with mean 1 on the death rate, unless specified otherwise.

In practice, it is faster to compute Eq. (3) using an extra dummy state, since
current computer processors are optimised to perform operations on blocks of
4. So, instead of using the Q-matrix from (2), we use a four state matrix

Q =


−λ λ 0 0
0 −µ µ 0
0 0 0 0
0 0 0 0

 (4)

and set the frequencies for the dummy state to zero. The character encoding is
like before, so the number of degrees of freedom of the model does not change.
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Typical usage

The pseudo Dollo model can be used as alternative to the stochastic Dollo model.
We envision that the pseudo Dollo model will be used for cognate data

according to the scheme of Chang et al. [4] as follows: for each meaning class,
a separate mutation rate is introduced, which is a multiplier for the branch
length that is independent from the clock rate. The mean of mutation rates over
meaning classes (weighted with the number of cognates in the meaning class) is
kept to 1 to ensure identifiability. Each of the meaning classes has ascertainment
correction conditioned on the languages having data for the particular meaning
class being absent – in effect conditioning on the fact at least some of the
languages contain the cognate, otherwise the cognate would not have been added
to the dataset. The meaning classes can share the pseudo Dollo model, so there
will be just 3 parameters to estimate for the Dollo model.

When there are few cognates per meaning class, it may be better to join the
cognates in a single partition and use a single mutation rate instead of one rate
per meaning class. In this situation, the pseudo Dollo model can benefit from
gamma rate heterogeneity across sites [19].

2.5 Variations on the pseudo Dollo model

We introduce two generalisations of the pseudo Dollo model. The first one allows
for fast and slow modes like in the covarion model, which we call the pseudo
Dollo covarion model. The second variation of the pseudo Dollo model allows
distinguishing different present states, which we call the multi state pseudo Dollo
model.

Pseudo Dollo Covarion model

The success of the covarion model in capturing cognate evolution suggests
some cognates can be stable (either absent or present) for a long period of
time alternated with rapid evolution. This feature of cognate evolution is
not captured by the pseudo Dollo model; it assumes constant rate of evolu-
tion along all branches in the tree. Just like the covarion model expands the
state space of the binary CTCM model with an extra state, we can expand
the state space of the pseudo Dollo model with one extra state for each of
the tree states to capture the switch between fast and slow evolution. This
would yield a fast and a slow absent state, a fast and a slow present state and
a fast and slow removed state. Since it will be impossible to escape the re-
moved state, the fast and slow removed states can be collapsed into a single
state. The rate matrix for the pseudo Dollo (PD) covarion model with states
fast absent, fast present, removed, slow absent, slow present is then
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Figure 1: Diagrams for (a) pseudo Dollo, (b) PD-covarion, (c) PD-covarion B,
and (d) multistate pseudo Dollo models with all rate parameters.

Q =


−λ− s λ 0 s 0

0 −µ− s µ 0 s
0 0 0 0 0
s 0 −s 0
0 s 0 0 −s

 (5)

Like the pseudo Dollo model, we have frequencies for absent, present and re-
moved states. Like for the covarion model, this is extended by frequencies for
fast and slow states, easiest kept to ( 1

2 ,
1
2 ) like in the reversible covarion model,

giving frequencies 1
2fabsent,

1
2fpresent, fremoved,

1
2fabsent,

1
2fpresent.

Unlike Tuffley and Steel’s covarion model, which does not allow a slow 0
to change into a slow 1 or vice versa, the BEAST covarion model allows such
changes with a small rate α. In practice, this can lead to a large increase in the
fit of the model. The PD-covarion model can be allowed a change from slow 0
to slow 1 with rate small rate α (α � λ) giving rise to the following model at
the cost of an extra parameter

Q =


−λ− s λ 0 s 0

0 −µ− s µ 0 s
0 0 0 0 0
s 0 −s− α α
0 s 0 0 −s

 (6)
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Multi state pseudo Dollo model

One way to encode cognates is by taking semantic shift in account. For example,
when there are three meanings for a cognate, instead of encoding them in binary
form where 0 means absence and 1 presence of the cognate, we can distinguish
presence of the cognate with three different values, say 1, 2 and 3. by allowing
the present state to have multiple values that are allowed to transition amongst
themselves. For example, when there are 3 possible states recognised as being
present, p1, p2, p3, we have states absent, p1, p2, p3, removed with rate matrix

Q =


−2λ λ λ 0

0 −µ− s s µ
0 s −µ− s µ
0 0 0 0 0

 (7)

The stochastic Dollo model was generalised to include more than two states
in [1]. A similar generalisation is possible for the pseudo Dollo covarion model
where the present state is split into multiple states, each with their own fast
and slow states, and allowing rates among fast present states.

3 Results

We performed a simulation study to ensure parameters can be reliably esti-
mated from simulated data. Since BEAST normalises the rate matrix so that
branch lengths can be interpreted in expected number of mutations per site, one
parameter can be chosen to be fixed, and we set the birth rate λ to 1. A death
rate and frequencies was sampled from the prior (µ from exponential with mean
1 truncated to the range 0 to 1, and frequencies from Dirichlet(5,2,1)). The tree
was sampled over 10 taxa using a Yule prior with birth rate sampled from a
log normal with mean 4 (in real space) and variance of 0.05. We used a strict
clock model to simulate sequence data of 1000 characters using the sequence
simulator facility in BEAST [2]. Then we ran an MCMC analysis in BEAST
under the same model, with a Yule tree prior co-estimating the phylogeny and
model parameters for 50 million samples, thus guaranteeing convergence. We
repeated the procedure a hundred times, and expected the model parameters
used to simulate the data is in the 95% highest probability density (HPD) in-
terval at about 95% of the runs. Table 1 summarises results, and shows that
indeed approximately 95% of the time the true value were contained in the 95%
HPD interval.

We compared performance of the pseudo Dollo model with that of the 2
state CTMC and covarion model on three different datasets: Indo-European
cognate data from the IELex database [3] with cognate data updated in 2015,
and Transeurasian data among 5 language families. The first dataset contains
many entries per meaning class, but the latter doesn’t, so for the first analyses
we used the scheme of Chang et al. [4] allowing one mutation rate per meaning
class, but for the latter we used a single partition analysis.
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parameter coverage
µ 96

fabsent 92
fpresent 96
fremoved 93

Tree height 95
Yule birth rate 94

Table 1: Results of simulation study for pseudo Dollo model. The number
indicates how many of the 100 simulated data sets resulted in inferences where
the true value (used to simulate the data) was contained in the 95% highest
probability density (HPD) interval.

For the Indo-European analysis, we used a rather sophisticated sampled
ancestor analysis [10] allowing ancient languages to become ancestral to later
languages, including modern day languages. An uncorrelated relaxed clock [7]
was used as clock model and calibrations similar to the ones in [3] were used.
In previous studies [3] it was shown that the covarion model outperforms the
CTMC and stochastic Dollo model by a considerable margin on similar data.
There is no reason to believe this changes with the corrections that were made
to the data, but since these analyses take quite long to run we only considered
the covarion and pseudo Dollo model. The marginal likelihoods for covarion and
pseudo Dollo did not even overlap. The mean likelihood was -51202 and -40212
for these models respectively, indicating a much better fit for the pseudo Dollo
model.

The Transeurasian data consists of cognate data over 50 languages spread
among 5 language families: Japonic, Koreanic, Mongolic, Tungusic and Turkic.
A detailed description of the data can be found in [16]. For the trans-Eurasian
data, we performed a uncorrelated relaxed clock [8] analysis with Yule prior.

Table 2 shows marginal likelihood estimates obtained using nested sampling
[14], which has as added benefit that it estimates both log marginal likelihood
and standard deviation of the estimate. The pseudo Dollo model outperforms
the covarion model, two state CTMC and stochastic Dollo models. with Bayes
factors overwhelmingly [13] favouring it. Adding rate heterogeneity to the
pseudo Dollo model improves the marginal likelihood. But the model fit for
the pseudo Dollo covarion model is even better than any of the other models.
The stochastic Dollo model performs especially poor compared to the other
models.

4 Conclusion

We showed that the pseudo Dollo has a comparable or even better fir than other
models commonly used in cognate evolution. In other words, the pseudo Dollo
model has the potential to explain the data equally well or better than other
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Substitution model Log Marginal likelihood
Covarion model -1090.8 (0.99)
Two state CTMC model -1106.5 (0.96)
Two state CTMC, 4 gamma model -1098.7 (1.05)
Stochastic Dollo model -1447.1 (1.74)
Pseudo Dollo model -1028.1 (0.92)
Pseudo Dollo, 4 gamma model -1020.1 (0.93)
Pseudo Dollo covarion model -1015.5 (0.93)

Table 2: Log marginal likelihood (ML) estimates (standard deviation in brack-
ets) for Transeurasian data for various substitution models using the relaxed
clock. Higher ML estimates indicate better model fit. Difference of ML es-
timates give the log Bayes factor(BF). This indicates that the pseudo Dollo
covarion model gives BF�100 with respect to any of the other models, and is
the best for for the data.

popular models. In particular, it performs much better than the stochastic Dollo
model, hence provides a good alternative to the other models for modelling and
explaining the data.

The main difference between the stochastic Dollo and the pseudo Dollo model
is that the stochastic Dollo model does not allow more than one birth event, but
the pseudo Dollo model does. As a consequence, when a cognate is borrowed
from a distant language, the stochastic Dollo model explains this by having a
birth event before the most recent common ancestor (MRCA) of the languages
involved, and for any of the descending clades that does not have the cognate
present a death event. When the clade borrowed from is distant, a lot of death
events are required, each death event making this scenario less likely. The
pseudo Dollo model on the other hand requires just two birth events, one each
before the clades containing the cognate, and requires less death events. On
balance, the pseudo Dollo model explains the data better when a borrowing
event takes place from a distant branch.

Likewise, when there are errors in coding the data, the stochastic Dollo
model requires a birth event before the MRCA of all taxa containing the cognate,
including the miscoded one, and thus includes possibly a large number of death
events. The pseudo Dollo model on the other hand only requires two birth
events; one before the MRCA of the actual cognate set, and one before the
miscoded taxon. In this case, the pseudo Dollo model fits the data better. In
addition, the covarion model allows multiple birth events, so it can deal with
miscoded cognates in a similar way.

The pseudo Dollo and PD-covarion models are implemented in Babel, a
package for BEAST [2], and a BEAUti template is available for setting up an
analysis using a graphical user interface. The package is licensed under LGPL,
and source code is available from https://github.com/rbouckaert/Babel.
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